
Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 77 / 235

ALGORITHM EFFICIENCY, A SIDE-BY-SIDE COMPARISON

Radu-Mihail CIUPERCĂ1

Vlad-Andrei MIHAI2

Daniela Alexandra CRIȘAN3

Abstract

This study presents a comparative analysis of the efficiency of classic sorting algorithms,

including Merge Sort, Quick Sort, Heap Sort, Bubble Sort, Selection Sort, Counting Sort

and the enigmatic Bogo Sort. Through a series of rigorous tests on arrays of varying sizes,

we measured the time complexities of each algorithm and examined their performance

characteristics. Our findings reveal distinctive patterns in the behavior of these algorithms,

highlighting their relative strengths and limitations in handling different data structures. By

evaluating factors such as time complexity, stability, and adaptability, we provide insights

that aid in the informed selection of sorting methodologies for diverse computational

challenges. This study contributes to a nuanced understanding of algorithmic efficiency and

provides valuable guidance for practical implementation in real-world applications.

Keywords: Efficiency, Sorting, Analysis, Complexity, Algorithms, Performance,

Comparison

JEL Classification: C63

1. Introduction

Efficiency is a cornerstone in computer science, which determines how effective and

efficient an algorithm is. The search for efficiency in ranking algorithms has led to the

development of various methods, each with its own strengths and limitations.

This review aims to shed light on the comparison of efficiencies among classical sorting

algorithms through their performance analysis under different conditions. By investigating

the time complexity and practicality of algorithms, we try to find the most appropriate

methods for different data structures and large arrays.

1 Power Platform Developer at BearingPoint Romania, raduciuperca2000@gmail.com
2 Software Developer at StarByte Romania, mihaivladandrei01@gmail.com
3 Associate Professor, PhD, School of Computer Science for Business Management, Romanian-American

University, e-mail: daniela.alexandra.crisan@rau.ro

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 78 / 235

The main contenders in this search are the time-tested algorithms Merge Sort, Quick Sort,

Heap Sort, Counting Sort, Bubble Sort, Selection Sort, Counting Sort and the fun Bogo

Sort. Previous research has shown that the run time complexity is strongly influenced by

the programming language [1]. The present research, with rigorous testing and statistical

analysis evaluation, will provide a comprehensive understanding of the misbehavior of

these algorithms with respect to time complexity, stability, adapt to different data

distributions.

By considering factors such as these, we try to provide valuable insights that can suggest

better strategies than the best configuration methods for specific computational challenges

will provide. In this comparative study, we examine the efficiency of each algorithm on

arrays of different sizes, delve into the nuances of their performance that reveal the

underlying complexity of their performance metrics, and target them so to provide a

comprehensive review of these classic sorting algorithms, the strengths of their relatives.

Let us highlight weaknesses.

2. Algorithms

2.1 Merge Sort

Merge Sort is an algorithm that is known for its efficiency and stability in sorting large lists

or arrays. It is a divide-and-conquer algorithm, and it operates by recursively dividing an

input array into smaller subarrays. It does this operation until each subarray consists of a

single element. All of the subarrays are then merged back together in a sorted order. The

main step in Merge Sort is the merging process, in which the algorithm compares the

elements of the divided subarrays, and it arranges them in a sorted order.

Merge Sort has a time complexity of O(n log n) in all cases and it is very efficient, as it

guarantees consistent performance. Its space complexity is O(n), ‘n’ being the number of

elements in the array, but the algorithm has a stable and predictable nature that makes it a

preferred choice for sorting tasks, as stability and predictability are essential for those types

of tasks [2].

2.2 Quick Sort

Quick Sort is a very efficient sorting algorithm that is widely used in sorting tasks. It also

follows the divide-and-conquer paradigm, and it selects a pivot element from the starting

array and then it partitions the rest of the elements into two subarrays. It does this split

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 79 / 235

according to whether they are less than or greater than the pivot. The subarrays are then

recursively sorted, and the process is repeated until the entire array is sorted.

The Quick Sort algorithm has the ability to sort-in-place, meaning that it doesn’t require

additional memory, and this is why it is very efficient. Its average time complexity is O(n

log n), which makes it one of the fastest sorting algorithms. However, in the worst-case

scenario, its complexity can become O(n^2), when the pivot selection is unbalanced. There

are different optimization techniques like choosing the pivot strategically, contributing to

mitigating the risk for improving its overall performance [3].

2.3 Heap Sort

Heap Sort is a sorting algorithm that is comparison-based. It utilizes a binary heap data

structure, and it begins by creating a heap from the input array. The largest element (for a

max-heap) or the smallest element (for a min-heap) is placed at the root. This element is

then swapped with the last element in the heap, which is then removed from the heap and

placed in the sorted array. The heap is updated, and the process repeats until we sort the

entire array.

Its time complexity is O(n log n) in all cases. This makes Heap Sort an efficient and stable

sorting algorithm, as it has an in-place sorting nature. It does not have the need for

significant extra memory, and this is why it is a preferred choice for large data sets.

However, it does not perform as well as other sorting algorithms because it has slower

constant factors. Heap Sort is a valuable algorithm in situations where the data is presented

as a binary heap [4].

2.4 Bubble Sort

Bubble Sort is a very simple and easy to understand algorithm. It is comparison-based and

it repeatedly steps through the array, compares each pair of adjacent items and swaps them

if they are in the wrong order. It repeats the passing through the array until it is sorted.

This method doesn’t make it a very efficient algorithm for large arrays. In the worst-case,

its average time complexity is O(n^2), making it a slow algorithm compared to more

advanced ones. For small datasets and short arrays, Bubble Sort is a practical option due to

its simplicity and ease of implementation [5].

2.5 Selection Sort

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 80 / 235

Selection Sort is a comparison-based algorithm that divides the input array into a subarray

of items that are already sorted and a subarray of items remaining to be sorted. It is a simple

algorithm that finds the smallest (or largest, depending on the order) element from the

unsorted subarray and swaps it with the leftmost unsorted element. It repeats the process

until the entire array is sorted.

Like Bubble Sort, it is easy to understand and implement, but it is not considered efficient

for large arrays. It has a time complexity of O(n^2) which makes it slow compared to other

algorithms. However, it has the advantage of minimizing the number of swaps and it is

useful in situations where the cost of swapping elements is very high [6].

2.6 Counting Sort

Counting Sort is a linear-time, non-comparative algorithm. It operates by counting the

number of occurrences of each element in the input array. The input needs to consist of

integers within a known range and the algorithm creates an auxiliary array that is the

counting array. This counting array stores the count of each distinct element. With these

counts, the algorithm determines the correct position of each element in the sorted output.

It has three phases:

• the counting phase: in which it reads the input and counts the occurrence of each

element and then saves it in a counting array.

• the accumulation phase: in which it modifies the array to represent the cumulative

count of elements. At this phase it ensures that each element’s sorted position is

accurately determined.

• sorting phase: in which it populates the output by placing each element in its correct

sorted position. It does this based on the information stored in the counting array.

It has a time complexity of O(n+k), ‘n’ being the number of elements in the input array and

‘k’ being the range of possible integer values. The algorithm is efficient when the range of

input values is not larger than the number of elements. Counting Sort is not suitable for

sorting non-integer data or data with a wide range of values [7].

2.7 Bogo Sort

Bogo Sort is an algorithm that has been made for fun. It is highly inefficient and impractical,

as it relies on pure luck and sheer randomness. It repeatedly shuffles the elements of the

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 81 / 235

array, and it checks if they are sorted. If the array is sorted, then it stops. If it is not sorted,

it does it again.

Bogo Sort is notorious for its abysmal performance. It has an average-case time complexity

of O((n+1)!), but it grows factorially with the number of elements. Because of this, it is

very slow and not practical for any sorting task. It is an example of how not to sort data [8].

3. Testing Methodology

To prevent bias, we chose to test all algorithms on multiple machines in a batch of one

hundred tests that will be measured and stored in an external database. This test covers all

7 algorithms presented earlier and has 5 phases where an array is generated by custom

method who generates random numbers based on the size of the output array, into an array

that will be used il almost all algorithms. The size of an array is calculated by this formula

10^Phase Number. The only exception is Bogo Sort, because it is an algorithm with an

unclear predict rate of complexity starting with a time complexity of O (1) that can become

O (∞). Based on this consideration, Bogo Sort will be run with a smaller chunk of values

starting from 3 and growing up by 1 on every phase. In this scenario the formula for the

size of the array is 3 + Phase Number.

Besides this organizational part, our solution has multiple key components that facilitate

the entire process from start to finish.

• C# code that executes the testing batch.

• Dataverse & Power Platform for storing and visualizing raw data.

• Power BI report to prepare data for analyzing and reporting.

3.1 C# Code

In this study we chose C# as programming language because C# is a relatively easy

language to learn and use. This makes it a good choice for people who want to understand

and extend the idea behind this project.

Another key point for using C# is the fact that this programming language is a strongly

typed one and a compiled language too, who can help us in developing more robust code

and we can also be sure that anything can be planed and tackled from the development part

of the app.

In addition to these general benefits, C# also has several specific features like delegates and

support with SDK for other Microsoft products like databases or web services.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 82 / 235

3.1.1 Tracking Time

For testing we created a dedicated class where we store all the algorithm implementation,

we implement a method called TrackTimeInTicks(). It takes four parameters:

• action: A delegate that points to the code that you want to measure the execution

time of.

• inputArray: An array of integers that will be passed to the action delegate. This

array is generated by a custom method created by us and will be discussed soon.

• executedAlgorithm: The name of the algorithm that you are measuring the

execution time of. This is necessary because we need to identify the algorithms in

the second phase of this article.

• phase: The phase of the algorithm that you are measuring the execution time of.

Like execution algorithms, this information is necessary for identification of the

execution phase of the algorithm.

The TrackTimeInTicks() method works by first creating a new Stopwatch object and starting

it. Then, it calls the action delegate with the inputArray parameter that is generated using a

dedicated function for that. Once the action delegate has finished executing, the Stopwatch

object is stopped, and the elapsed time is calculated.

The elapsed time is then saved to a database using the DatabaseStorage class. Then, we

need to serialize the inputArray parameter to JSON before saving it to the database.

Finally, the TrackTimeInTicks() method prints the elapsed time to the console to make it

easier to watch the progress during the execution. At the end of the method, we use the built

in Garbage Collection Mechanisms from C# to be sure that unused memory after execution

is cleared and cannot affect other tests. In the figure below the code associated with this

explanation can be seen.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 83 / 235

Figure 1 – Track Time in Ticks Method

3.1.2 Generating Values

The previous figure was the most important part of the project and the starting point of

benchmarking a couple of classic sorting algorithms. We observed that we use another 3rd

party function and classes and now we will discuss every important bit.

To generate that number, we have created a method to generate an array of numbers based

on the size of the array. Numbers are generated between 0 and 900.000.000. We

implemented sorted flags to generate sorted arrays for debugging purposes.

In the figure below we can see how this generation is implemented.

Figure 2 – Generate Array Method

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 84 / 235

3.1.3 Saving and storing tests

To have consistent data to be analyzed, we decided to store information into an external

database because we want to run these algorithms in parallels to be efficient from time

perspective and to prevent possible misleading information from reading and transferring

data from console output to another data storage source. To do this we used Power Platform

SDK to interact with Microsoft Dataverse as a data storage environment. Figure 3 presents

how we tackled this implementation in our code.

Figure 3 – Storing data in Dataverse.

3.1.4 Test Batch and running conditions

The last piece of our puzzle is the testing batch that contains all algorithms executed through

the TrackTimeInTicks() method. This method uses the generation function to create the

initial arrays than execute each algorithm. To be sure that all algorithms are executed with

the same data set we need a second array where we store the original array through

execution. In Figure 4 generatedArray is the original array and usedArray is the middleman

between executions. This middleman is overwriting after every execution using function

method from Array class.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 85 / 235

Figure 4 – Testing batch run method

Our program executes this test batch 100 times to ensure a large quantity of data to obtain

pertinent values for further analysis.

3.2 Dataverse & Power Platform Ecosystem

After we presented the code part for generating results, now it’s time to show the

infrastructure that facilitates storing of items and visualizations of them.

For storing data, we use Dataverse from Microsoft Power Platform. We chose this option

because it is strongly linked with Power BI, another component that we chose for this

project to manipulate and visualize data.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 86 / 235

Another reason for choosing this approach is the free tier offered to developers which

involves a database with a size of 2GB, always online for us. This tier is available for all

organizations that have any Microsoft 365 License active.

To store data, we created a table called algorithm runs and added some key attributes to

capture the relevant information of every run.

In the table below we have the name of the attribute, data type and the logical name. A

logical name is the identifier that helps us in code to map the information in the storage

environment.

In table 1 are presented the attributes added to our Dataverse column to support the

application.

Name Type Logical Name

Algorithm Run GUID - ID cre3f_algorithmrunid

CPU Architecture String cre3f_cpu_architecture

CPU Identifier String cre3f_cpu_identifier

Elapsed Time in Seconds Decimal cre3f_elapsedtmeinseconds

Name (of the run algorithm) Decimal cre3f _name

Number of Processors String cre3f_numberofprocessors

OS (Operating System) String cre3f_OS

Phase String cre3f_Phase

Tabel 1 – Dataverse columns to facilitate the application

Because we want the testing batch to send data automatically, we created an Azure App

Registration, and we use that as a S2S4 User.

To monitor data submitted by the end user we also used the benefits from Power Platform

free tier. We created a small model driven app to be able to navigate easier through the

data that we collected. We have a grid for visualizing all data and a form to view and edit,

if necessary, the selected data. In the figures below we have the front-end of the actual

power app.

4 S2S - Software 2 Software

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 87 / 235

Figure 5 – Power App Form for data modification

Figure 6 – Power App Grid for data visualization

3.3 Reporting using Microsoft PowerBI

Power BI is a must-have tool for analyzing and visualizing data. Its robust and user-friendly

features empower you to integrate with simple data sources, including those generated by

your algorithms, and transform raw data into complex visualizations.

The platform offers several customizable visualization options like interactive dashboards,

you can dynamically search for patterns, trends and outliers within your data, fostering a

deeper understanding of an algorithm performance.

Because Power BI is in the same product family as Power Apps and Dataverse we have

seen an opportunity to use it as an instrument for data cleaning and visualization.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 88 / 235

In the figure below you can see how our PowerBI Report is built.

Figure 7 – Power BI report for seconds

To achieve that we need to make some transformations first. We managed to create some

custom columns in PowerBI model in order to not affect the original data. To do that we

have 2 alternatives DAX and Power M Query Languages. We chose to work with DAX5

because it is very similar with Microsoft Excel Formula.

One example of these modifications can be a custom column to display a more friendly

name of the CPU name, because our code extract from target computer operating system

from internal CPU naming offered by the manufacturer.

In figure 8 is the DAX code to do that. It’s a simple SWITCH function that assigns a friendly

name for the CPU identifier.

Figure 8 – DAX Code for Friendly CPU Name column

5 DAX - Data Analysis Expressions

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 89 / 235

Another interesting example is creating dedicated columns for creating individual

controllable graph lines to interact with other elements of the report.

In figure 9 is the DAX code. In this context we look for “Bubble Sort” in the name of the

run and assign elapsed time in seconds for that item, else it will set the cell as blank. We do

that to prevent wrong average calculations and increase interaction capabilities.

Figure 9 – DAX Code for Bubble Sort Elapsed Time column

4. Results

After a long journey, our results are here. Because we chose to track time in ticks in figure

10, we have all recorded values in ticks and in figure 11 the same values in seconds.

According to Microsoft Documentation, a tick is 100 nano seconds, so we obtain the value

in seconds creating a custom column using DAX where we apply this formula.

𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 = 𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑇𝑖𝑐𝑘𝑠 ∗ 10.000.000.

Figure 10 – Results in Ticks

Figure 11 – Results in Seconds

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 90 / 235

These values are the result of 6 runs executed in different system configurations on

Windows Operating Systems for computer in a range of 8 years from release date from the

manufacture and cover the most significant players in CPU markets (Intel & AMD), and

covers three generations of RAM6 memory, from DDR3 to DDR5.

One of our challenges was the similarity between Intel Core i9 12900H and Intel Core i7

12700H, because they are created on the same CPU wafer and have the same identical

name. This makes our identification process almost impossible in this actual scenario, so

we assimilate the Intel Core i9 12900H as Intel Core i7 12700H.

In Figure 12 we have the distribution of CPUs in our test batch.

Figure 12 – Distribution of CPUs in our test batch

Also, for a better understanding of the data we attach in figure 13 and 14 there is an

execution graph where are all algorithms compared. The graph has on OX axes the phase

number and on OY, the number of ticks for that current execution. We can observe that in

the first phase of sorting, where we have a number of 10 values, the most efficient algorithm

is Bubble Sort, and the least efficient algorithm is Counting Sort. These results are in figure

13.

6 RAM – Random access Memory

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 91 / 235

Figure 13 – Results in Seconds

In the last phase we observed a dramatic change in execution time. The fastest algorithm in

phase one, now is the most inefficient, and the most effective algorithm is Quick Sort,

followed by Merge Sort and Heap Sort.

Figure 14 – Results in Seconds

If we want to compare all algorithms to the fastest one for the last phase, we observed an

enormous difference between algorithms. In table 2 we have all algorithms compared one

to the fastest one, Quick Sort.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 92 / 235

Algorithm
Bubble

Sort

Counting

Sort

Heap

Sort

Merge

Sort

Quick

Sort

Selection

Sort

Result 257668 20924.81 361.47 155.15 100 179298.9

Tabel 2 – How slower are rest of the algorithm compared to the fastest one (in

percentage)

5. Conclusions and Future Work

The presented research aimed to analyze the efficiency of some classical sorting algorithms

considering a range of criteria, in order to contribute to the advancement of algorithmic

understanding and to the informed selection of sequential selection methods for

computational tasks.

Because our test batch was quite small, from the number of devices point of view, we can’t

come with pertinent conclusions for operating systems perspective and processor

performance against algorithms.

We want in future to come back with an extended version of this paper in order to have

more data to analyze and a more comprehensive testing and analyzing policy, with a large

set of analyzed algorithms and an even distribution of operating systems. In this project we

encountered lots of problems and managed to tackle and bring back some lessons learned

from this process.

References

[1] Crișan D. A., Simion G. F., Moraru P. E., “Run-time analysis for sorting algorithms”,

Journal of Information Systems and Operations Management (JISOM), Vol 9 No 1, 2015

[2] SANCHHAYA EDUCATION PVT. LTD., “Merge Sort – Data Structure and

Algorithms Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/merge-sort/. [Accessed 15 October 2023].

[3] SANCHHAYA EDUCATION PVT. LTD., “QuickSort – Data Structure and Algorithm

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/quick-sort/. [Accessed 18 October 2023].

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 93 / 235

[4] SANCHHAYA EDUCATION PVT. LTD., “Heap Sort – Data Structures and

Algorithms Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/heap-sort/. [Accessed 16 October 2023].

[5] SANCHHAYA EDUCATION PVT. LTD., “Bubble Sort – Data Structure and

Algorithm Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/bubble-sort/. [Accessed 14 October 2023].

[6] SANCHHAYA EDUCATION PVT. LTD., “Selection Sort – Data Structure and

Algorithm Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/selection-sort/. [Accessed 15 October 2023].

[7] SANCHHAYA EDUCATION PVT. LTD., “Counting Sort – Data Structures and

Algorithms Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/counting-sort/. [Accessed 14 October 2023].

[8] SANCHHAYA EDUCATION PVT. LTD., “BogoSort or Permutation Sort,”

Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/bogosort-permutation-sort/. [Accessed 23 October 2023].

Bibliography

AKINSHIN, Pro .NET Benchmarking: The Art of Performance Measurement, Apress,

2019.

CRIȘAN D. A., Simion G. F., Moraru P. E., “Run-time analysis for sorting algorithms”,

Journal of Information Systems and Operations Management (JISOM), Vol 9 No 1, 2015

JAMRO M., C# Data Structures and Algorithms: Explore the possibilities of C# for

developing a variety of efficient applications, Packt Publishing, 2018.

RIVERA J., Building Solutions with the Microsoft Power Platform: Solving Everyday

Problems in the Enterprise, O'Reilly Media, 2023.

POWELL B., Mastering Microsoft Power BI: Expert techniques for effective data

analytics and business intelligence, Packt Publishing, 2018.

MICROSOFT, “DateTime.Ticks Property | Microsoft Learn,” 14 October 2023. [Online].

Available: https://learn.microsoft.com/en-us/dotnet/api/system.datetime.ticks?view=net-

8.0.

MICROSOFT, “Ticks class | Microsoft Learn,” 14 October 2023. [Online]. Available:

https://learn.microsoft.com/en-us/javascript/api/adaptive-

expressions/ticks?view=botbuilder-ts-latest.

Journal of Information Systems & Operations Management, Vol. 17.2, December 2023

Pag. 94 / 235

MICROSOFT Learn, “Action<T> Delegate,” Microsoft Learn, [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/api/system.action-1?view=net-8.0. [Accessed 10

October 2023].

MICROSOFT Learn, “Environment.GetEnvironmentVariable Method,” Microsoft Learn,

[Online]. Available: https://learn.microsoft.com/en-

us/dotnet/api/system.environment.getenvironmentvariable?view=net-8.0. [Accessed 21

October 2023].

SANCHHAYA EDUCATION PVT. LTD., “Counting Sort – Data Structures and

Algorithms Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/counting-sort/. [Accessed 14 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “Bubble Sort – Data Structure and Algorithm

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/bubble-sort/. [Accessed 14 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “Selection Sort – Data Structure and Algorithm

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/selection-sort/. [Accessed 15 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “Heap Sort – Data Structures and Algorithms

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/heap-sort/. [Accessed 16 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “Merge Sort – Data Structure and Algorithms

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/merge-sort/. [Accessed 15 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “QuickSort – Data Structure and Algorithm

Tutorials,” Sanchhaya Education Pvt. Ltd., [Online]. Available:

https://www.geeksforgeeks.org/quick-sort/. [Accessed 18 October 2023].

SANCHHAYA EDUCATION PVT. LTD., “BogoSort or Permutation Sort,” Sanchhaya

Education Pvt. Ltd., [Online]. Available: https://www.geeksforgeeks.org/bogosort-

permutation-sort/. [Accessed 23 October 2023].

	(2023.12) Coperta 1
	2_JISOM 17.2 (final) - Cuprins+Continut
	(2023.12) Coperta 4

